

Deb Caraco, P.E.

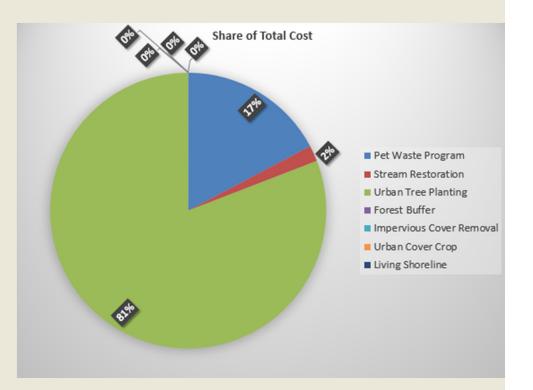
2015 North Country Stormwater Tradeshow Queensbury, NY

October 15, 2015

We Work Here.....

- National non-profit 501(c)3 organization
- ♦ 21 staff
- Offices in MD, VA, NY, PA

What we do


- Distill research into practical tools
- Provide local watershed services
- Train others to manage watersheds

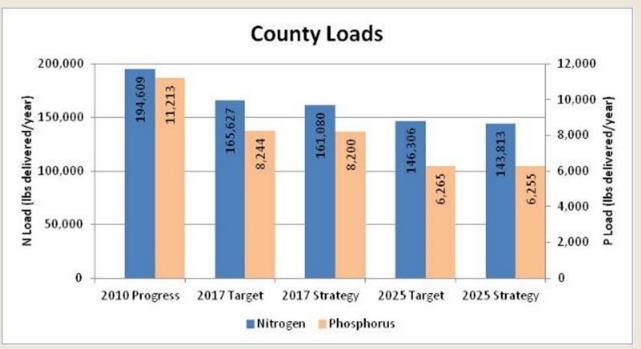
Clean Water Optimization Tool *Overview*

- Spreadsheet-based Tool
- Developed for the Eastern Shore of Maryland
- Pilot areas in 4 Counties in this region
- Planning tool designed to help communities achieve water quality and other goals at the lowest cost possible.

Clean Water Optimization Tool *Overview*

- Tool Can Be Used To:
 - Help the user find the least expensive way to meet a water quality goal.
 - Meet multiple goals for the lowest price (currently TN and TP)
 - Incorporate weighting to select "favorite" practices.

Clean Water Optimization Tool *Overview*


- Elements of the Tool
 - Set up the Scenario
 - Enter BMP Cost Data
 - Optimization Results

	A B C D E F G H I J								
1	Clean Water Optimization Tool CENTER FOR								
2	Eastern Shore, Maryland Version 1.01								
3	December 2014 PROTECTION								
4	Updated April 2015								
5									
6	What is the Clean Water Optimization Tool?								
7	The Clean Water Optimization Tool (Tool) is a planning tool for Maryland Eastern Shore communities to develop cost-effective stormwater best management practice								
8	(BMP) scenarios for meeting Watershed Implementation Plan (WIP) goals. For each scenario, the Tool provides the number of units treated by each selected BMP,								
9	an estimate of the associated annual nitrogen, phosphorus and sediment load reductions and the total cost, so that users can compare results across scenarios.								
10									
11	The Tool focuses solely on the stormwater sector, and does not include BMPs for agriculture, forest or wastewater at this time, although the Tool does provide								
12	the option to track loads from agricultural land that are treated by BMPs located on urban land. The results are for planning purposes only and should not be								
13	used to develop detailed budgets or capital improvement project plans. Communities are encouraged to conduct desktop and field assessments to identify								
14	specific locations for BMPs to increase the reliability of the Tool results. Guidance on conducting these assessments is provided in the User Guide.								
15									
16	How is the Tool Different From the Maryland Assessment and Scenario Tool (MAST)?								
17	The Tool includes the following features that are not included in MAST:								
18	Incorporates a full suite of BMPs, including ones not currently credited in the Chesapeake Watershed Model (credits for some of these BMPs are currently								
19	under development, while others are not yet available but show promise for significantly reducing the costs to achieve the WIP goals)								
20	Allows the user to optimize BMP selection based on cost-effectiveness for a particular pollutant								
21	Incorporates assumptions about the practicality of installing each type of BMP, so that the resulting scenarios are realistic and achieveable								
22	 Includes cost data that has been adjusted for the Eastern Shore counties 								
23	Scenarios can be run at a user-defined scale								
	Instructions Scenario Setup BMP Costs Optimization Results Cost Result Chart Nitrogen Result Chart Phosphorus Re 🕂 :								
R	ADY 🛗 III III III III III III III III III								

Cost for Water Quality Goals are all over the place

Urban Sector Bar Graphs Representing TN and TP Loads for 2010 Progress, 2017 Interim Strategy and Target, and 2025 Final Strategy and Target.

Source: MDE Nutrient Allocation Files (CBP Model 5.3.2.), MDE prepared 2010 Progress MAST loading decks, and the Core Planning Team Loading Decks

Clean Water Optimization Tool Background and Importance of This Work

Cost of Achieving Goals with Stormwater Practices is Staggering

		Pre-	0		Total Instal	Total Post-	Total Costs over	Average
DMD Marris	11-24	Construction	Construction		Total Initial	Construction		Annual Costs
BMP Name	Unit	Costs	Costs	Land Costs	Costs	Costs	12 Years	over 12 years
Bioretention/raingardens	Acres	\$6,920,211	\$27,680,843	\$2,214,467	\$36,815,521	\$13,561,487	\$48,865,698	\$4,072,141
Bioswale	Acres	\$3,780,000	\$9,450,000	\$630,000	\$13,860,000	\$3,519,218	\$16,857,841	\$1,404,820
Permeable Pavement – with sandveg with	Acres	\$8,095,549	\$80,955,492	-	\$89,051,041	\$9,747,602	\$95,834,684	\$7,986,224
underdrain with AB soils								
Stormwater Management by Era 1985 to 2002	Acres	\$8,208,196	\$16,416,391	-	\$26,624,587	\$12,131,054	\$35,652,972	\$2,971,081
MD								
Street Sweeping 25 times a year – acres	Acres/Year	-	\$3,599,155	-	\$3,599,155	\$3,223,639	\$6,618,110	\$551,509
(formerly mechanical monthly)								
Urban Forest Buffers	Acres	\$86,734	\$867,340	-	\$954,074	\$426,870	\$1,339,516	\$111,626
Urban Infiltration Practices – with sandveg no	Acres	\$12,610,679	\$31,526,697	\$3,603,051	\$47,740,427	\$7,834,561	\$53,907,738	\$4,492,312
underdrain								
Urban Nutrient Management	Acres/Year	-	\$27,723,893	-	\$27,723,893	\$1,876,601	\$28,712,479	\$2,392,707
Urban Stream Restoration (Interim)	Linear Feet	\$5,676,000	\$11,352,000	-	\$17,028,000	\$12,548,448	\$28,689,155	\$2,390,763
Urban Stream Restoration; Shoreline Erosion	Linear Feet	\$34,056,000	\$68,112,000	-	\$102,168,000	\$75,290,688	\$172,134,927	\$14,344,577
Control; Regenerative Stormwater Conveyance								
Urban Tree Planting; Urban Tree Canopy	Acres	\$2,851,750	\$28,517,500	\$125,000,000	\$156,369,250	\$13,998,600	\$165,256,815	\$13,771,401
Vegetated Open Channel - Urban	Acres	\$5,040,000	\$25,200,000	\$2,520,000	\$32,760,000	\$9,228,341	\$40,728,691	\$3,394,058
	Total	\$87,325,119	\$331,401,311	\$133,967,518	\$554,693,948	\$163,387,109	\$694,598,624	\$57,883,219

Wicomico County Cost to Implement Developed Lands BMPs (2010 – 2025)^[1] derived from King and Hagan (2011) Over \$58 Million/year for One County (about \$580/person)!!

Treatment Costs per acre of impervious cover are also extremely variable

Jurisdiction	Acres of Untreated Impervious Surface	Acres to be Treated in Next 5 Year MS4 Permit Cycle	Projected Costs Annualized	Average Annual Cost Per Acre to be Treated
Anne Arundel	14,887	2,714	\$80,540,000	\$29,676
Baltimore	23,373	4,953	\$45,700,000	\$9,227
Baltimore City	28,983	4,180	\$33,400,000	\$7,990
Carroll	6,449	1,644	\$6,813,873	\$4,145
Charles	2,607	512	\$9,488,120	\$18,531
Frederick	6,725	1,192	\$22,400,000	\$18,792
Harford	8,308	1,573	\$18,000,000	\$11,443
Howard	11,453	2,179	\$42,000,000	\$19,275
Montgomery	21,458	3,835	\$66,580,942	\$17,361
Prince George's	22,020	4,243	\$89,800,000	\$21,164

Innovative BMPs can substantially reduce costs

Annual cost to remove equivalent annual TN load

	in the familiar and a second second
e cost-effectiveness of stormwater cont	rois for hitroden removal

Practice	Type of practice	Equivalent Annual cost (\$/lb N/IC ¹ ac)
Bag filter	Structural	\$69 ¹
Bioretention (new, suburban)	Structural	\$335-\$634 ^{2,3}
Wet pond (new)	Structural	\$733 ⁴
Street sweeping	Non-structural	\$165 ⁵

¹ Based practice life expectancy of 10-years.

² Costs for other practices based on King and Hagen (2011) over a 20-year period and an urban loading rate of 14.1 lb TN/acre.

³ Range represents a removal efficiency of 45% and 85% from Simpson and Weammert 2009.

⁴ 20% removal efficiency for TN from Simpson and Weammert 2009

⁵ Berretta et al. 2011 expressed as lb N/year

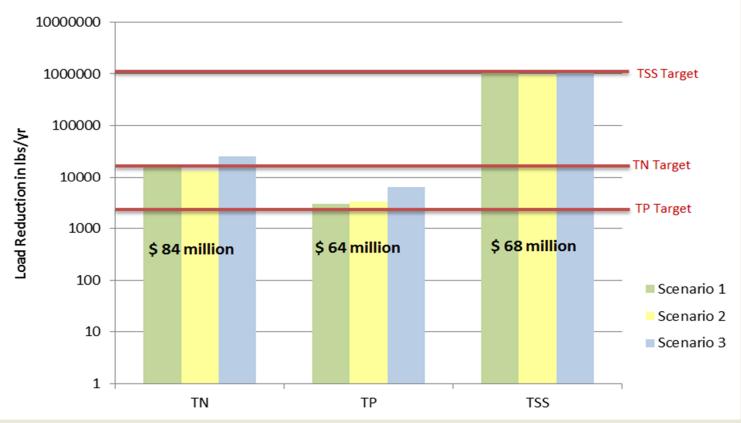
Illicit discharge elimination is a cost effective approach to nutrient management

Common sense housekeeping practices can be extremely cost effective also

Table 5. Urban BMPs Applicable in City of Richmond, Sorted by Cost-Effectiveness for TSS Removal

Urban BMP ¹⁰	TN Cost Effectiveness (dollars per pound removed)	TP Cost Effectiveness (dollars per pound removed)	TSS Cost Effectiveness (dollars per pound removed)
Pet waste program	0.44	3.36	N/A
Nutrient Management (old efficiencies)	306.73	641.91	N/A
Nutrient Management (recommended efficiencies)	579.38	2,055.82	N/A

- Evaluation of all urban practices
- Costs and pollutant removal
- Case study in the City of Richmond


Methods: Cost Estimates

- King and Hagan (2011): Costs of Stormwater Management Practices in Maryland Counties
- Additional studies, data and assumptions used for pet waste programs, illicit discharge elimination, stormwater retrofits, and urban growth reduction
- Considered 20-year life cycle costs, including:
 - Design and construction
 - Land values and financing
 - Operations and maintenance

Clean Water Optimization Tool *Cost: Case Study*

Costs and Pollutant Removal for City of Richmond Stormwater BMP Scenarios

Initial estimates for stormwater pollution reduction in the City of Richmond = \$305 million

Key Findings

- Focus on CBP BMP approval is vital but cannot ignore alternatives
- Implementation constraints can impact ability to meet load reductions
- On the ground assessments needed to further refine strategies
- Costs may be lower if focus is placed on private land
- Cost will vary depending on goals (TN vs. TP)

BMPs

36 Urban Practices:

- Pavement/Impervious Cover
- Rooftop
- Bioretention
- Filtering/Infiltration
- Channels
- Ponds/Wetlands
- Conservation/Enhancement
- Land Use Change
- Social/Programmatic

• Also Includes cross-sector trading and user-defined options

Cost Estimate Resources

• <u>King and Hagan</u> study: *Costs of Stormwater Management Practices in Maryland Counties*

Life cycle costs per impervious acre for 24 BMPs in 2011 dollars.
 Developed to be used for estimating the cost of MAST scenarios.

• <u>CWP James River Report</u>: Cost-Effectiveness Study of Urban Stormwater BMPs in the James River Basin

- Additional studies used for pet waste, retrofits, IDDE

• <u>CWP Retrofit Manual</u>: Urban Stormwater Retrofit Practices (Urban Subwatershed Restoration Manual Series)

 Used to fill in the cost estimate gaps for stormwater planters, green roofs, vegetated filter strips, soil augmentation, rainwater harvesting, and stormwater tree pits/structural soils.

Cost Components

- Initial Costs design, construction, land costs
- Operation and Maintenance annual routine maintenance, intermittent maintenance, county implementation cost (inspection and enforcement)
- Annualized life cycle costs are estimated as the annual bond payment required to finance the initial cost of the BMP (20year bond at 3%) plus average annual routine and intermittent maintenance costs.

Process for Estimating Cost

- 1. Used the King and Hagan study as the initial framework.
- 2. Converted unit costs for tree planting, forest buffers, and urban nutrient management from impervious to pervious acres based on the approach in the James River Report. Also converted the unit cost for stream restoration to linear feet.
- 3. Added pet waste, retrofits, and IDDE cost estimates from the James River Report.
- 4. Filled in the gaps in cost data using the Retrofit Manual.
- 5. Applied a 4% cost adjustment for inflation to convert \$2011 to \$2014.

Cost

Cost Data

				al Project Cost	s ¹		Routine and	Intermittent M Costs	aintenance	Average	Maintenance, Repair, and Im Cost	plementation	Total Storm w ater I per Unit Trea	
		Pre- Construction	Constructio n Costs (in 2014		Total Initial	Annualized	Annual Routine Maintenance	Annual Intermittent Maintenance	Total Annual Maintenanc	Annual County Implementatio	Total (Over Selected	Average	Costs (Over Selected	Average Annual
Storm v ater BMP	Unit	Costs ²	dollars) ³	Land Costs ⁴	Costs	Initial Costs ⁵	•	,	e Costs	n Costs ¹⁰	Timeframe)	Annual	Timeframe)	Cost
Impervious Urban Surface Reduction	per impervious acre			\$ 50,000	\$ 150,100	\$ 10,089			\$ 910					
Tree Planting/Forest Buffers	per pervious acre	\$ 1,061			\$ 11,673									
Urban Tree Planting (street trees)	per pervious acre	\$ 1,186			\$ 163,050									
Wet Ponds and Wetlands (Suburban)	per impervious dore	\$ 5,788			\$ 27,080									
Wet Ponds and Wetlands (Urban)	per impervious acre	\$ 23,073			\$ 71,220									\$ 5,579
Proprietary Devices	per impervious acre	\$ 7,280	\$ 36,400		\$ 43,680									
Dry Extended Detention Ponds (Suburban)	per impervious acre	\$ 9,360	\$ 31,200		\$ 45,560									\$ 4,341
Dry Extended Detention Ponds (Urban)	per impervious acre	\$ 24,336	\$ 48,672		\$ 78,008	\$ 5,243							\$ 130,447	
Infiltration Practices	per impervious acre	\$ 17,784	\$ 44,460		\$ 67,244									
Sand Filters	per impervious acre	\$ 15,600	\$ 39,000		\$ 59,600			\$ 780	\$ 1,560					
Urban Nutrient Management ⁶	per pervious acre	\$ -	\$ 5,718		\$ 5,718			\$ -		\$ 2.79				
Street Sweeping ⁷	per impervious acre		\$ 6,291		\$ 6,291				\$ 431					
Stream Restoration	per linear foot	\$ 224			\$ 671					\$ 0.31				
Bioretention (Suburban - aka Rain Garden)	per impervious acre	\$ 9,750		\$ 3,000	\$ 51,750									\$ 5,069
Bioretention/Green Streets (Urban)	per impervious acre	\$ 56,784			\$ 201,744									
Vegetated Open Channels	per impervious acre	\$ 4,160			\$ 26,960									
Regenerative Stormwater Conveyance/Bioswale	per impervious acre	\$ 12,480	\$ 31,200	\$ 2,000	\$ 45,680	\$ 3,070					\$ 19,340			\$ 4,037
Permeable Pavement w/o Sand, Veg. (New)	per impervious acre	\$ 27,181	\$ 271,814	\$ -	\$ 298,996									\$ 22,826
Dry Pond Conversion to Wet Pond or Wetland	per impervious acre	\$ 6,440	\$ 12,880	\$ -	\$ 19,321	\$ 1,299	\$ 258	\$ 258			\$ 10,718	\$ 536	\$ 36,691	\$ 1,835
Pet Waste Program	per program	\$ 5,000	\$ 172,707		\$ 177,707									\$ 68,551
Advanced IDDE: Correction of Cross-Connections	per connection	\$ 1,400			\$ 4,782				\$ 55					\$ 420
Advanced IDDE: Sewer Repair	per discharge	\$ 9,610	\$ 96,096	\$ -	\$ 105,706	\$ 7,105	\$ 55	\$ -	\$ 55	\$ 43.84	\$ 1,977	\$ 99	\$ 144,078	\$ 7,204
Stormwater Planter	per impervious acre	\$ 21,904	\$ 109,518		\$ 131,422	\$ 8,834					\$ 44,014	\$ 2,201	\$ 220,686	\$ 11,034
Dry Swales	per impervious acre	\$ 59,055	\$ 147,638	\$ 2,000	\$ 208,694	\$ 14,027	\$ 780	\$ 780	\$ 1,560	\$ 31.01	\$ 31,820	\$ 1,591	\$ 312,370	\$ 15,619
Wet Swales	per impervious acre	\$ 4,160	\$ 20,800	\$ 2,000	\$ 26,960	\$ 1,812	\$ 416	\$ 208	\$ 624	\$ 10.34	\$ 12,687	\$ 634	\$ 48,929	\$ 2,446
Green Roof	per impervious acre	\$ 379,103	\$ 947,757	\$ -	\$ 1,326,860	\$ 89,186	\$ 18,955	\$ 18,955	\$ 37,910	\$ 31.01	\$ 758,826	\$ 37,941	\$ 2,542,543	\$ 127,127
Vegetated Filter Strip	per impervious acre	\$ 2,527	\$ 25,272		\$ 29,799	\$ 2,003	\$ 253	\$ 253	\$ 505	\$ 10.34	\$ 10,316	\$ 516	\$ 50,375	\$ 2,519
Soil Augmentation	per impervious acre	\$ 3,159	\$ 31,590	\$ -	\$ 34,749	\$ 2,336	\$ -	\$ -	\$ -	\$ 10.34		\$ 10	\$ 46,920	\$ 2,346
Rainwater Harvesting	per impervious acre	\$ 21,061	\$ 105,305	\$ -	\$ 126,366	\$ 8,494	\$ 1,053	\$ 1,053	\$ 2,106	\$ 20.67	\$ 42,535	\$ 2,127	\$ 212,411	\$ 10,621
Tree Pits/Structural Soils	per impervious acre	\$ 58,971	\$ 294,856	\$ -	\$ 353,827	\$ 23,783	\$ 2,949	\$ 2,949	\$ 5,897	\$ 31.01	\$ 118,562	\$ 5,928	\$ 594,217	\$ 29,711
Gross Solids Removal	per impervious acre	\$ 302	\$ 1,512	\$ -	\$ 1,814				\$ 302	\$ 31.01				

User-Adjusted Values: Land/ Financing Costs

1. Variables Used to Develop Annualized Costs:

Annualized life cycle costs for each BMP were estimated as the annual bond payment required to finance the in of the BMP plus average annual routine and intermittent maintenance costs.

Review the major assumptions used below and replace the defaults provided if necessary to better reflect the l

Variable	Value	
Opportunity cost of developable land		
(\$/acre)	\$100,000	
Typical proportion of land that is		
developable (%)	50%	
Interest rate associated with bond payment		
to finance construction (%)	3%	
Number of years over which to project costs	20	

User-Adjusted Values: Unit Costs

2. BMP Cost Data:

For each BMP, an average annual cost per unit treated is provided below, based on the County selected in the Scenario Setup sheet.

Review the County-Specific costs, and if desired, enter annual per-unit cost data that better reflects local conditions in the User Defined column.

ВМР	Units	Default Annual Cost per Unit	User-Defined Annual Cost per Unit
	Units		Oser-Dermed Annual Cost per Onic
Permeable Pavement	Acres	\$22,095.27	
Permeable Pavers	Acres	\$22,095.27	
Rainwater Harvesting	Acres	\$9,252.96	
Stormwater Planter	Acres	\$10,681.22	
Green Roof	Acres	\$123,059.06	
Downspout Disconnection	Acres	\$29.20	
Bioretention	Acres	\$4,907.20	
Rain Garden	Acres	\$4,907.20	
Green Streets	Acres	\$13,973.98	
Vegetated Filter Strips	Acres	\$2,438.15	
Hydrodynamic and Filtering Practices	Acres	\$6,395.56	
Infiltration	Acres	\$5,265.98	
Stormwater Tree Pits/Structural Soils	Acres	\$28,760.08	
Sand Eiltor	Acros	¢5 /17 06	

Example

A 500 foot stream restoration project will be installed in Wicomico County. Assume a 20 year life-cycle cost and 0.97 county adjustment factor.

	Pre-Construction Costs	\$223.60
	Construction Costs (in 2014 dollars)	\$447.20
Initial Costs	Land Costs	\$0.00
	Total Initial Costs	\$670.80
	Annualized Initial Costs	\$45.09
	Annual Routine Maintenance	\$0.00
	Average Annual Intermittent Maintenance	\$8.94
Operation and	Total Annual Maintenance Costs	\$8.94
Maintenance	Average Annual County Implementation Costs	\$0.31
	Total (Over Selected Timeframe)	\$185.08
	Average Annual	\$9.25
Total Cost per	Costs (Over Selected Timeframe)	\$1086.85
Unit Treated	Average Annual Cost	\$54.34

All costs are per linear foot.

500 ft x \$1086.85/ft x 0.97 = \$527,122 over 20 years

500 ft x \$54.34/ft x 0.97 = \$26,355 average annual cost

• Additional BMP Benefits should be quantified:

- Public Health/ Safety
- Public Education
- Recreation
- Neighborhood Beautification
- Urban Heat Island
- Carbon Footprint
- Wildlife Habitat
- Stream Habitat
- Flood Control

- BMP Effectiveness
 - Structural practices and Land Use Changes based on Chesapeake Bay Program measures of performance.
 - Programmatic practices are based on various sources
 - IDDE Expert Panel (Chesapeake Bay Program)
 - Watershed Treatment Model (WTM)
 - Previous CWP publications, research, and experience

Clean Water Optimization Tool Steps to Use the Tool

- Step 1: Desktop Assessment/Informative Exercise
 - Use local knowledge
 - Accepted data sources
 - National
 - State
 - County
 - Town

Field work in the South Prong, Wicomico County

Clean Water Optimization Tool Steps to Use the Tool

• Step 2: Entering Practical Estimates

- Apply information gathered to selected/accepted BMPs
 - This will allow practical maximums to be set
 - Practical maximum amount of permeable pavement to be installed, for example
- Apply local knowledge and practical experience
 - For example, sand filters may not be readily accepted by the community
 - This would limit installation of this particular practice

- Step 3: Override Default Cost Values & Specify Programmatic Information
 - Enter information about local costs, if available
 - Important for realistic scenario development
 - Modify land cost, and length of time to project costs
 - Estimate parameters for programs
 - Quantity of Promotional and education materials for a pet waste program, for example

- Step 4a: Account for Practices that Have Already Been Implemented
 - These entries will count toward goals before optimization
 - These practices can be entered individually or estimated as groups of a given practice
 - For example, over an entire county there may be 20 acres treated by a bioretention, these can be aggregated and entered as one
 - Costs associated with the installation of these practices are ignored

- Step 4b: Enter High Priority Practices
 - Enter information about high priority practices
 - Practices that are publicly accepted
 - Practices proven to be effective
 - High comfort level with installation/maintenance
 - These practices will be weighted heavier during optimization
 - Estimated costs will not be changed

Outfall net in Talbot County

Clean Water Optimization Tool Steps to Use the Tool

- Step 5: Optimize
 - Select optimization goals
 - Based on cost per pound of nitrogen reduction
 - Based on cost per pound of phosphorus reduction
 - Based on cost per pound of sediment reduction
 - Based on a nitrogen and phosphorus weighting
 - 50/50 would equally weight optimization based on cost per pound of N AND cost per pound of P
 - Results will show pertinent information
 - Pounds reduced, if less than goals
 - Estimated cost
 - Number of acres requiring treatment for each practice to achieve total reductions

Clean Water Optimization Tool *Demonstration – Community Information*

Results Cells

1. Community Information:

Enter the required inputs in the yellow cells below. Required pollutant load reductions for urban areas will be calculated automatically based on the County selected. Optionally, specific pollutant reductions goals may be entered in the blue cells if the scenario is being run for a municipality or at the watershed scale.

County of Interest	Allegany County
Are you an NPDES regulated community?	Yes
Scenario Starting Year (Use 2009 for WIP	
scenarios)	2013
Scenario Endpoint	2025

Required Pollutant Load Reductions:

Pollutant	Total County Urban Load (lbs/yr)	County Reduction Goal (lbs reduced/yr)	Reduction Goal (Ibs/yr) for scale other than county	
TN	76,023	8,514		
ТР	23,201	3,899		
TSS	48,025,081,112	#N/A		

Clean Water Optimization Tool *Demonstration - BMPs*

2. Best Management Practices:

For each BMP below, enter the maximum practical number of units that can be treated in the jurisdiction or watershed of interest.

If you do not want to include a particular BMP in the scenario, enter a ZERO in the Maximum Practical Units Treated column.

For some BMPs, you must also estimate the average percent imperviousness in the drainage area.

You may also enter the % agricultural land in the drainage area for certain BMPs if applicable. There is currenlty no mechanism for counting these reductions to the urban sector targets but the Tool will track these reductions separately so that opportunities to receive credit or trade with other sectors can be further expl See the User Guide for instructions on deriving estimates of maximum practical number of units and impervious area treated.

Not sure where to begin? Try this.			
Enter your budget for stormwater BMP implementation:	\$1,000,000.00 per year	Select Nutrient: TN	
The table below will populate with the number of units that can pote	ntially be treated with the given budget, for	the top 5 most cost-effective practices	s for N
Note that full implementation of the number of units suggested can	only occur for ONE of the BMPs shown with	the available budget	
Top BMPs for Nitrogen			
Suggested Practices	Units Treated*	Units ^{* *}	
Downspout Disconnection	34247	Acres	
Stream Restoration	12148	Linear Feet	
Living Shoreline	16089	Linear Feet	
Pet Waste Program	1319	Number of pet waste stations	
Conversion of Dry Pond to Wet Pond	563	Acres	

* Units Treated is based only on the cost of the practice and does not account for physical and practical constraints on implementation **Number of units shown is for BMPs that treat a 100% impervious drainage area

Clean Water Optimization Tool *Demonstration - BMPs*

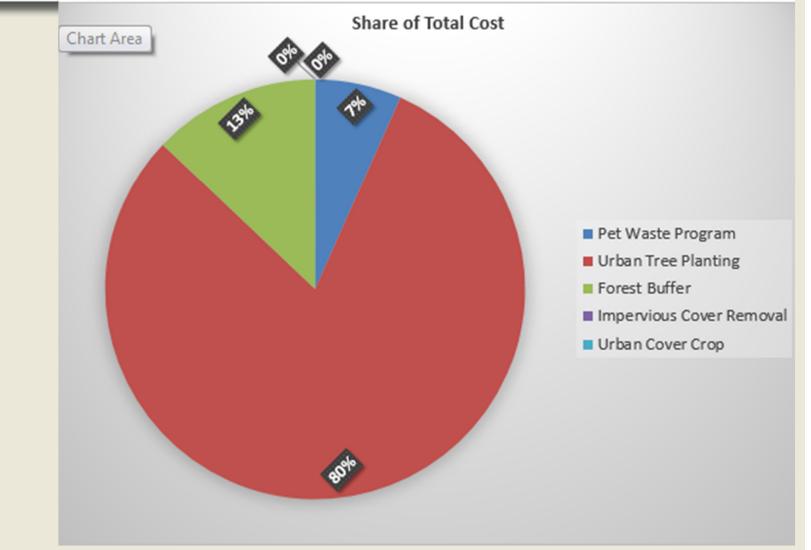
	Stormwater Retrofits	Units	Maximum Practical Units Treated	Estimated Impervious Cover % in Drainage Area	Estimated Agricultural Land % in Drainage Area
Pavement/In	npervious Cover BMPs				
	Permeable Pavement	Acres	1000	100%	0%
	Permeable Pavers	Acres	1000	100%	
Rooftop BMP	l S				
	Rainwater Harvesting	Acres	1000	100%	
	Stormwater Planter	Acres	1000	100%	
	Green Roof	Acres	1000	100%	
	Downspout Disconnection	Acres	1000	100%	
Bioretention					
	Bioretention	Acres	1000	100%	
	Rain Garden	Acres	1000	100%	
	Green Streets	Acres	100	100%	
			,	l	

Clean Water Optimization Tool *Demonstration - Costs*

2. BMP Cost Data:

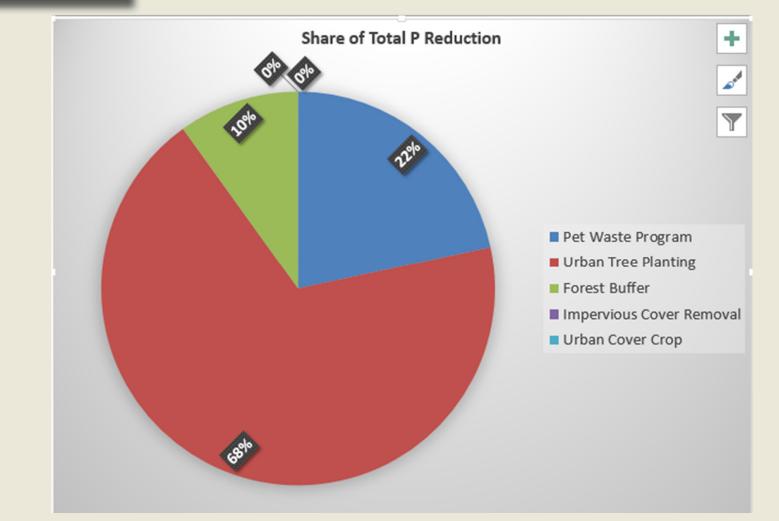
For each BMP, an average annual cost per unit treated is provided below, based on the County selected in the Scenario Setup sheet. Review the County-Specific costs, and if desired, enter annual per-unit cost data that better reflects local conditions in the User Defined column.

ВМР	Units	Default Annual Cost per Unit	User-Defined Annual Cost per Unit
Permeable Pavement	Acres	\$22,095.27	
Permeable Pavers	Acres	\$22,095.27	
Rainwater Harvesting	Acres	\$9,252.96	
Stormwater Planter	Acres	\$10,681.22	
Green Roof	Acres	\$123,059.06	
Downspout Disconnection	Acres	\$29.20	
Bioretention	Acres	\$4,907.20	
Rain Garden	Acres	\$4,907.20	
Green Streets	Acres	\$13,973.98	
Vegetated Filter Strips	Acres	\$2,438.15	
Hydrodynamic and Filtering Practices	Acres	\$6,395.56	
Infiltration	Acres	\$5,265.98	
Stormwater Tree Pits/Structural Soils	Acres	\$28,760.08	
Sand Filter	Acres	\$5,417.96	
Dry Swale/Bioswale	Acres	\$3,908.22	
Wet Swale	Acres	\$2,368.18	
Vegetated Open Channels	Acres	\$2,368.18	
Regenerative Stormwater Conveyance	Acres	\$20,815.42	

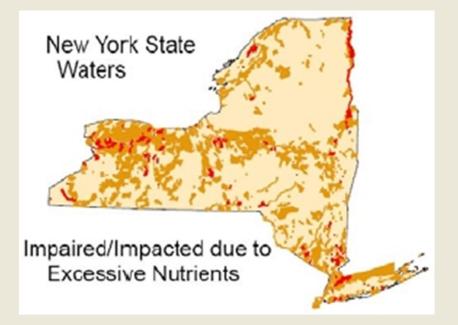

Clean Water Optimization Tool Demonstration - Optimization

Optimize Based on: TP					
Update Results 4. Results:					
		ТР	TSS		

			TP	TSS				
		TN Reductions	Reductions	Reductions				
Practice	Units Treated	(lbs/yr)	(lbs/yr)	(lbs/yr)	Annual Cost	\$/Ib TN	\$/lb TP	\$/Ib TSS
Pet Waste Program	500	3,148.1	410.6	0.0	\$378,967	\$120	\$923	
Urban Tree Planting	1,000	3,066.6	1,299.3	1,505,335.4	\$4,571,666	\$1,491	\$3,519	\$3
Forest Buffer	622	1,292.3	188.7	94,467.9	\$734,482	\$568	\$3,892	\$8
Impervious Cover Removal	0	0.0	0.0	0.0	\$0	\$19,012	\$11,798	\$8
Urban Cover Crop	0	0.0	0.0	0.0	\$0	\$1,389	\$22,030	
Total:	2,122	7,507.0	1,898.6	1,599,803	\$5,685,114 per yea	r OR \$113,70	2,284 over 2	20 years
Percent of Required Reductions								
Met:		166.3%	100.0%					
Remaining Reductions Needed to								
Meet Targets		0.0	0.0	0				



Clean Water Optimization Tool Demonstration - Results


Clean Water Optimization Tool We Need Your Help

Clean Water Optimization Tool Application in New York State

- Very Little of New York State is in the Chesapeake Bay Watershed.
- Other applications include:
 - Other TMDL Watersheds
 - Local pollution reduction goals
 - Capture targets in CSO watersheds
 - Others?

Changes Needed to Apply in New York

- Unit costs adjusted with NY Data
- Target loads tied to goals in New York State
- Possibly add new parameters (e.g., bacteria/ runoff reduction)
- Other changes?

Questions/Comments

Deb Caraco, P.E.

dsc@cwp.org 607-242-9941